Indian Ocean Circulation and Climate Variability

نویسندگان

  • Friedrich A. Schott
  • Shang-Ping Xie
  • Julian P. McCreary
چکیده

[1] In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews climate phenomena and processes in which the IO is, or appears to be, actively involved. We begin with an update of the IO mean circulation and monsoon system. It is followed by reviews of ocean/atmosphere phenomenon at intraseasonal, interannual, and longer time scales. Much of our review addresses the two important types of interannual variability in the IO, El Niño–Southern Oscillation (ENSO) and the recently identified Indian Ocean Dipole (IOD). IOD events are often triggered by ENSO but can also occur independently, subject to eastern tropical preconditioning. Over the past decades, IO sea surface temperatures and heat content have been increasing, and model studies suggest significant roles of decadal trends in both the Walker circulation and the Southern Annular Mode. Prediction of IO climate variability is still at the experimental stage, with varied success. Essential requirements for better predictions are improved models and enhanced observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mathematical Model for Indian Ocean Circulation in Spherical Coordinate

In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews processes in which the IO is, or appears to be, actively involved. We begin the mathematical model with a pattern for summer monsoon winds. Three dimensional temperature and velocity fields are calculated analytically for the ocean forced by ...

متن کامل

Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans

Modes of tropical climate variability, such as the El Niño– Southern Oscillation (ENSO), the Indian Ocean Basinwide Mode (IOBM), the Indian Ocean Dipole (IOD), and the Atlantic Equatorial Mode (AEM) (sometimes referred to as the Atlantic Zonal Mode, or Atlantic Niño) interact most readily via the atmosphere. Sea surface temperature anomalies (SSTAs) in the tropics drive changes in the Walker Ci...

متن کامل

3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon

Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...

متن کامل

The Indonesian throughflow, its variability and centennial change

The Indonesian Throughflow (ITF) is an important component of the upper cell of the global overturning circulation that provides a low-latitude pathway for warm, fresh waters from the Pacific to enter the Indian Ocean. Variability and changes of the ITF have significant impacts on Indo-Pacific oceanography and global climate. In this paper, the observed features of the ITF and its interannual t...

متن کامل

A Simple Model for the Pacific Cold Tongue and ENSO*

A conceptual model is constructed based upon the Bjerknes hypothesis of tropical atmosphere–ocean interaction. It is shown that strong feedbacks among the trade winds, equatorial zonal sea surface temperature contrast, and upper-ocean heat content occur in the tropical Pacific basin. Coupled atmosphere–ocean dynamics produce both the strong Pacific cold-tongue climate state and the El Niño–Sout...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009